### **Technical Data**

### **Insert Grade Information**

| ALP-XL      | Extremely smooth self lubricating surface coupled with the latest coating        |
|-------------|----------------------------------------------------------------------------------|
| (K10 - K25) | technology ensures frictionless chip removal resulting in long tool life. Use in |
|             | materials with less than 10% silicon content. Also may be used in titanium.      |

**HMF** Excellent edge strength and the ability to hold a sharp edge makes this grade a perfect choice for machining non-ferrous materials.

**MPS** PVD TiAIN coating holds up well in high heat applications. This grade is used for machining tough materials such as stainless and hardened steel.

MPX Excellent choice for machining dies molds and difficult to machine materials such as titanium and nickel alloys. Ideal for high speed and dry machining applications.

PDC Polycrystalline, carbide reinforced diamond of fine grit size, good cutting edge (DP - N25) sharpness and low cutting pressure allowing close tolerances. Increased flank wear resistance and toughness.

PDC-L Polycrystalline, carbide reinforced diamond of ultrafine grit size, high cutting edge (DP - N10) sharpness, minimal cutting pressure allowing close tolerances. Good flank wear resistance and toughness.

PDC-S Polycrystalline carbide reinforced diamond of coarse grit size, good edge sharpness and low cutting pressure allowing close tolerances. Best performances for milling. High flank wear resistance and toughness.

**RK20C** Tough carbide substrate layered with ceramic coating gives unsurpassed (K05 - K20) performance in grey and nodular cast iron applications. The ceramic based coating allows for high speeds and dry cutting.

RK150 Coated grade for milling cast iron materials. Extremely high wear resistance and (HC-K15) edge strength provides for long tool life in abrasive materials. Heat resistant coating allows this grade to be used in dry machining applications.

RM352 TiAlN PVD coating on a tough substrate makes this grade an excellent choice for applications in a broad range of materials where good toughness is needed, including stainless steel and aerospace alloys.

**RP15K** Heat resistant  $Al_2O_3$  coating allows for higher cutting speeds and long tool life in a wide range of materials and applications. Four layers of coating are interlocked for excellent adhesion to the insert. Use in semifinishing to finishing of steel and stainless steel. Can be used in moderate interrupted cut applications.

60 tel: 888.554.7264 Rani Tool Corp. fax: 860.665.7319

### **Technical Data**

### **Insert Grade Information**

RP25K Universal turning grade with good toughness and excellent wear resistance.

Particularly suited for rough to semifinishing of all steels and stainless steels. May (P15 - P30, M15 - M25)

be used in cast iron as well. First choice for an all purpose grade of carbide.

RP35K The toughest of RTC's steel turning family. The tough carbide substrate with the MT-(P25 - P45, M25 - M45)

CVD coating guarantees maximum performance in heavily interrupted cutting of

steel and stainless steel.

**RP35** Tough uncoated grade for milling steel and cast steel under unfavorable cutting

(HW - TTR) conditions. Low cutting speeds and heavy chip loads, excellent for rough milling.

**RP350** CVD coated grade allows for all around successful machining in all the materials (HC - K25, M35, P35)

groups. Runs at higher surface footages and exhibits excellent toughness. First

grade choice for most applications.

High resistance to oxidation makes this wear resistant grade an excellent choice for **RP354** 

milling applications where long tool life is required at higher surface footages. (HC - M35, P35)

AlTiN coated grade runs at high speed for semi roughing and finishing SLK

(HC - K25, M25, P25) applications. Excellent choice for aerospace materials and 300 series stainless steel

too.

SLX General machining of steel. Excellent impact and wear resistance for use in

(HC - P35) finishing to roughing of all steels.

TK10M Uncoated K10/C2 wear resistant grade, suited for machining of non-ferrous (HW - K10)

materials, high temp. alloys as well as synthetic materials including fibreglass, graphite and plastic. Recommended to run with coolant only when materials

require wet machining.

TiAlN coating. Recommended grade for high speed machining of aluminum and TK10MP

non-ferrous materials. Good wear resistance. Designed to be used with coolant. (HC - K10)

TK10TB PVD diamond film coating offering greatly extended tool life over conventional

carbide. Recommended specifically for synthetic materials such as graphite.

**TK20** Micrograin carbide with excellent edge strength allos these tools to have extremely

sharp cutting edges. Excellent for use in aluminum alloys and plastic materials.

Usually polished to prevent edge build up.

TP30MC Good balance of toughness and wear resistance makes this a perfect choice for

(HC - P30) milling of steel at high surface footages especially when good toughness is

required.

(HW - K20)

### **Troubleshooting**



#### Flank Wear

General criteria for the end of tool life, characterized by an admissible amount of flank wear. (Figures usually relate to a tool life of T=15min.)

Remedy:

- · select more wear-resistant grade
- reduce cutting speed



#### **Notch Wear**

Occurs locally in the area of the primary cutting edge where it contacts the workpiece surface. Caused by hard surface layers and work-hardened burrs, especially on stainless austenitic steels. Danger of breakage!

Remedy:

- strengthen cutting edge
- select smaller cutting edge angle (45°)
- · reduce feed



#### **Edge Chipping**

Minor chipping along the cutting edge, usually accompanied by flank wear and therefore not always identifiable. Danger of breakage! Edge chipping outside the cutting area is the result of chip impact due to unfavourable chip removal.

Remedy:

- select tougher grade
- use insert with stronger cutting edge geometry
- reduce feed when starting the cut

In the case of damage due to chip impact:

- vary feed
- change chipbreaker geometry
- · change cutting edge angle



#### **Built-Up Edges**

Edge build-up occurs on the rake face as a result of work material welding together with the cutting material, especially when cutting difficult-to-machine materials. From time to time, the built-up edge will break off and may cause damage to the cutting edge. Also, built-up edges produce poor surface finishes.

Remedy:

- · increase cutting speed
- $\bullet \ use \ coated \ hardmet als \ or \ cermets$
- · select positive cutting edge geometry
- use cutting fluid

62 tel: 888.554.7264 Rani Tool Corp. fax: 860.665.7319

### **Troubleshooting**



#### **Thermal Cracks**

Small cracks running across the cutting edge, caused by thermal shock loads in interrupted cutting operations, particularly in milling. Danger of breakage!

Remedy:

- · use grade with greater resistance to thermal shock
- check use of cutting fluid; cutting fluid should not generally be used for milling, except with special grades for wet milling, e.g. TN450, aluminum, titanium alloys and high-temperature materials
- · use compressed air to remove chips in slot milling



#### **Insert Breakage**

Insert breakage usually means damage to tool and workpiece. The causes are varied and also depend on machine and workpiece. This often originates in notches or other excessive types of wear.

Remedy:

- select tougher grade
- · reduce feed and possibly also depth of cut
- · select chip breaker geometry for heavier chip sections



### **Burring**

Chipping of the workpiece edge when cutter leaves the cut (mainly in cast iron).

Remedy:

- select smaller cutting edge angle for the tool
- select more positive cutting edge geometry
- change cutter position relative to workpiece



#### **Workpiece Vibrations**

Remedy:

- · clamp workpiece more rigidly
- change cutter position relative to workpiece
- · select a cutter with a different cutting edge angle

#### **Cutter Vibration**

Remedy:

- · minimize cutter overhang
- increase feed
- reduce cutting speed

### Use of cutting fluids in milling

Remedy:

- · cutting fluid should preferably not be used
- if cutting fluid is essential, then in copious amounts at low pressure with TN450 as the primary grade selection

### **Circular and Helical Interpolation:**



Circular and Helical Interpolation is an application where the cutter rotates on its own axis together in an orbiting motion around the workpiece (either internally or externally), while at the same time plunging to the required depth of cut. In order to accomplish this application, a machine with three-axis control capabilities is required.

Calculating feed rate: Unlike linear milling applications (face milling) where the tools cutting edge and centerline is identical, circular and helical interpolation feed rate is based only on the tools centerline (Vfi). The following formulas should be used to obtain the optimal running conditions.

**Definitions** 

**D** = cutter diameter

**d** = insert diameter

ap = depth of cut

fz = feed per tooth**fzkor** = correction feed per tooth **Vfi** = feed rate at cutters centerline

**D**1 = workpiece bore diameter

**T** = number of cutting teeth **rpm** = revolutions per minute

### **Milling Cutter Diameter Selection Calculation:**

Note: all values should be in inch

Minimum Cutter Diameter:  $D_{min} = \frac{D_1}{2}$ 

Optimum / maximum Cutter Diameter:  $D_{opt/max} = \frac{D1 + d}{2} - 1$ 

### **Calculating Feed Rate:**

Note: all values should be in inch

Feed Rate Correction for Drill Milling with Round Inserts:  $f_{ZKOT} = f_{Z} \times \frac{d}{a_{D}} \times \frac{1}{135}$  inv cos\*  $(1 - \frac{1.5 \times a_{D}}{d})$ 

Depth of Cut (ap):

**max.** ap  $\leq 0.5 \times d$  **opt.** ap = 0.25 x d \* inv cos = cos  $^{-1}$ 

Feed Rate at Centerline of Tool when Drill Milling (Vfi)

 $V_{fi} = (1 - \frac{D}{D_1}) \times rpm \times f_{zkor} \times T$ 

or approximately:

 $V_{fi} = .008 \times rpm \times f_{zkor} \times T$ 

### **Example:**

#### **Cutter Data:**

Cutter description: ..... R360 Face Mill

Diameter (D): ..... 4"

Insert Diameter: ..............6299 (16mm)

Insert grade: .....TN5515

No. of teeth (T):.....8

#### **Recommended Machining Conditions:**

Surface feet/minute (sfm): ...... 533 Spindle speed (rpm): ...... 509





$$f_{zkor} = .008 \text{ x } \frac{.6299}{.157} \text{ x}$$
 inv cos (  $1 - \frac{1.5 \text{ x } .157}{.6299}$  ) = 0.0122

$$V_{fi} = (1 - \frac{4}{8}) \times .509 \times 0.122 \times 8 + 24.798 \text{ or } 25 \text{ ipm}$$

#### **Machining Programming:**

In order to maintain the recommended .008" feed per tooth (fz) for this insert size and application, the machine tool should be programmed for a feed of 25" per minute (ipm).



Circular and Helical Interpolation is an application where the cutter rotates on its own axis together in an orbiting motion around the workpiece (either internally or externally), while at the same time plunging to the required depth of cut. In order to accomplish this application, a machine with three-axis control capabilities is required.

Calculating feed rate: Unlike linear milling applications (face milling) where the tools cutting edge and centerline is identical, circular and helical interpolation feed rate is based only on the tools centerline (Vfi). The following formulas should be used to obtain the optimal running conditions.

### Milling Cutter Diameter Selection Calculation

Note: all values should be in inch

Minimum Cutter Diameter:  $D_{min} = \frac{D_1}{2}$ 

Optimum / Maximum cutter Diameter:  $D_{opt/max} = \frac{D1 + d}{2} - 1$ 

#### **Definitions**

D = cutter diameterd = insert diameter

**D**1 = workpiece bore diameter

**ap** = depth of cut

**fz** = feed per tooth

fzkor = correction feed per tooth
 Vfi = feed rate at cutters centerline

**T** = number of cutting teeth

**rpm** = revolutions per minute

### **Calculating Feed Rate:**

Note: all values should be in inch

Feed Rate at the Cutting Edge ( $V_f$ ) Inches per Minute:  $V_f = f_7 \times rpm \times T$ 

Feed Rate at Centerline of Tool when Drill Milling (V<sub>fi</sub>):

**Internal Milling Applications:** 

$$V_{fi} = \frac{V_f x (D_1 - D)}{D_1}$$

**External Milling Applications:** 

$$V_{fi} = \frac{V_f \times (D_1 - D)}{D_1}$$

### **Example:**

#### **Cutter Data:**

 Cutter description:
 AP90 Face Mill
 AP90 End Mill

 Diameter (D):
 4"
 1.5"

 Insert number:
 222.79.400
 222.79.400

 Insert grade:
 TN7525
 TN7525

 No. of teeth (T):
 8
 4

ID: Face Mill  $V_f = .008 \times 10 \times 358 = 28.6 ipm$ 

OD: End Mill  $V_f = .004 \times 4 \times 1082 = 17.3 ipm$ 

# 8" 16"



#### **Machining Programming:**

Based on the above OD and ID milling calculations, you must program the machine at the appropriate feed rate (Vfi) for each tools centerline.

### **Cutting Ratios and Undeformed Chip Thickness in Milling**

Valid for  $a_e < 0.3 d_1$ 



$$f_z = h_m * \sqrt{\frac{d}{a_e}}$$

$$f_z = h_m * \sqrt{\frac{d_1}{a_e}} \qquad \qquad h_m = f_z * \sqrt{\frac{a_e}{d_1}}$$

At least 2 cutting edges in the working area of the feed motion angle  $\boldsymbol{\phi}$ 

Valid for  $a_p < 0.3 d_1$ 



min. cutter diameter  $d_1 \simeq 1.25 * a_e$ 

max. width of cut  $a_e \simeq 0.8 * d_1$ 

Valid for  $a_p < 0.3$ 



$$f_z = h_m * \sqrt{\frac{d}{a_p}}$$

$$h_m = f_z * \sqrt{\frac{a_p}{d}}$$



$$f_z = h : \sin \chi_r$$

$$h = f_z * sin \ \chi_r$$

### Up Milling / Down Milling with Square Shoulder and Side Face Mills





### **Up Milling / Down Milling with Face Mills**





### Average Chip Thickness h<sub>m</sub>





### **Approximate Formula**

$$a_e \le \frac{D}{4} : h_m \approx \sqrt{\frac{a_e}{D}} * f_z * \sin \chi_r \qquad \qquad h_m \approx f_z * \sin \chi_r$$

$$h_{\text{m}} \approx f_{z} * sin \; \chi$$

### Formulas:



### Legend:

p = 3.1416

 $\mathbf{a}_{\mathbf{e}} = \text{Width of cut}$ 

 $\mathbf{a}_{\mathbf{p}}^{\mathbf{e}} = \text{Depth of cut}$ 

**d** = Diameter of milling cutter, in inches

**d** = Effective diameter

 $\tilde{\mathbf{f}}_{\mathbf{z}} = \text{Feed, inches per tooth}$ 

**h** = Scallop height

**ipm** = Feed, inches per minute

ipr = Inches per revolution

mrr = Metal removal rate in cubic inches

**rpm** = Revolutions per minute

**s** = Stepover value between two cutting passes, in inches

sfm = Surface feet per minutez = Number of effective teeth

### To calculate effective diameter of ball nose tool

$$d_e = 2*\sqrt{\left(\frac{d}{2}\right)^2 - \left(\frac{d}{2} - a_p\right)^2}$$

#### To calculate inches per revolution

$$ipr = \frac{ipm}{rpm}$$

#### To calculate sfm when rpm is known

$$sfm = .262*d*rpm$$

### To calculate f, when ipm, rpm & z are known

$$f_z = \frac{ipm}{z * rpm}$$

### To calculate rpm when sfm is known

$$rpm = \frac{sfm*3.82}{d}$$

### To calculate f<sub>z</sub> when ipr & z are known

$$f_z = \frac{ipr}{z}$$

### To calculate scallop height (cusp height)

$$h = \frac{d}{2} - \sqrt{\left(\frac{d}{2}\right)^2 - \left(\frac{s}{2}\right)^2}$$

#### To calculate metal removal rate

$$mrr = a_p * a_e * ipm$$

### To calculate inches per minute (table feed)

$$ipm = f_z * z * rpm$$

### **ISO / ANSI Grade Chart• Cutting Materials**



#### Hardmetals

Sintered hardmetals are made by powder metallurgy and in the most simple case consist of Tungsten Carbide (WC) as a source of hardness, and Cobalt (CO), which is primarily responsible for toughness. Titanium Carbide and/or tantalum carbide or niobium carbide are added to improve high-temperature properties. This applies particularly to oxidation resistance, hot hardness, elevated-temperature strength and diffusion resistance in the presence of iron-base alloys. Hardmetals attain their final properties at sintering temperatures of approximantly 1500° C.

### **Coated Hardmetals (ISO group HC)**

Highest wear resistance and good toughness can be combined by appropriate coating techniques. The preferred process for hardmetal is Chemical Vapour Deposition. In the CVD process, extremely hard thin layers of coating material (e.g. TiC, TiN, Al203) are deposited on tougher hardmetal substrates at temperatur.lower temperature, 850°C instead of 1000°C. The chemical vapour disposition rates are much higher, thereby reducing the time required for completion. MT-CVD offers minimal diffusion of the substrate and a minimal loss of toughness properties.

The much longer life and higher cutting speeds attainable through coating, boost cost-efficiency and productivity. Inventory requirements are also reduced, thanks to the wider range of applications for coated grades.

### **Uncoated Hardmetals (ISO group HW)**

The conventional uncoated hardmetals comprise a variety of mature grades. They are still employed frequently in milling but to a relatively small extent in turning and drilling. Their applications mainly include operations involving light cuts requiring sharp cutting edges and operations demanding very high toughness. Uncoated hardmetal grades are also used on nonferrous metals and nonmetallic materials.

In most steel and cast iron applications, coated hardmetals are preferred because they offer much longer life and/or higher cutting speeds and thus permit more cost effective production.

### for A90, HA90, AP75 End & Face Mills

|              | CUTTING DA                                                                                                                              | TA FOR SQ                                                                  | UARE SHOULDER                                                                                                                                                                                                   | MILLS                                                        |                                          |      |                                       | Coa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ited                                                                  |                                                                      |                                                                                                                                                                                                       | Ur     | ncoate             | ed   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|------|
| ISO 513      |                                                                                                                                         | MILLING                                                                    | CUTTER / MATERIAL                                                                                                                                                                                               |                                                              |                                          | ı    | 50 / RF<br>P30M                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | RM352                                                                | 2                                                                                                                                                                                                     |        | RP35               |      |
|              | Cutter                                                                                                                                  | Max. a_                                                                    | Carbid                                                                                                                                                                                                          | e Insert                                                     |                                          |      | 1 30111                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fz inc                                                                | hes p                                                                | er too                                                                                                                                                                                                | oth 1) |                    |      |
|              | A90 1)                                                                                                                                  | .33                                                                        | ADHT                                                                                                                                                                                                            | -1003                                                        |                                          |      | .002                                  | .004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | .003                                                                 | .005                                                                                                                                                                                                  |        | .002               | .004 |
|              | A90 1)                                                                                                                                  | .55                                                                        | APHT / APNT                                                                                                                                                                                                     | / APNX-16                                                    | 04                                       | .003 | .006                                  | .009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .003                                                                  | .007                                                                 | .010                                                                                                                                                                                                  | .003   | .006               | .009 |
|              |                                                                                                                                         |                                                                            |                                                                                                                                                                                                                 | Hardness                                                     |                                          |      |                                       | Cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ting S                                                                | peeds                                                                | in SF                                                                                                                                                                                                 | PM     |                    |      |
|              | Work Material Carbon steel,                                                                                                             | < 0.25% C                                                                  | Condition<br>annealed                                                                                                                                                                                           | <b>HB</b> 125                                                | Mat. Gr.                                 | 1073 | 813                                   | 683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 618                                                                   | 536                                                                  | 504                                                                                                                                                                                                   | 553    | 488                | 455  |
|              | Unalloyed steel                                                                                                                         | < 0.25% C<br>≥ 0.25% C                                                     | annealed                                                                                                                                                                                                        | 190                                                          | 2                                        | 813  | 634                                   | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 455                                                                   | 374                                                                  | 358                                                                                                                                                                                                   | 390    | 325                | 293  |
|              | cast steel and                                                                                                                          | < 0.55% C                                                                  | heat-treated                                                                                                                                                                                                    | 250                                                          | 3                                        | 683  | 520                                   | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 374                                                                   | 325                                                                  | 293                                                                                                                                                                                                   | 325    | 260                | 228  |
| P            |                                                                                                                                         | > 0.55% C                                                                  | annealed                                                                                                                                                                                                        | 220                                                          | 4                                        | 699  | 553                                   | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 390                                                                   | 358                                                                  | 325                                                                                                                                                                                                   | 358    | 276                | 260  |
|              | <b>.</b>                                                                                                                                | _ 0.55% C                                                                  | heat-treated                                                                                                                                                                                                    | 300                                                          | 5                                        | 601  | 423                                   | 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325                                                                   | 276                                                                  | 260                                                                                                                                                                                                   | 276    | 228                | 195  |
|              | Low alloy steel                                                                                                                         |                                                                            | annealed                                                                                                                                                                                                        | 200                                                          | 6                                        | 780  | 601                                   | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 455                                                                   | 374                                                                  | 358                                                                                                                                                                                                   | 390    | 325                | 293  |
|              | and cast steel                                                                                                                          |                                                                            | heat-treated                                                                                                                                                                                                    | 275                                                          | 7                                        | 601  | 471                                   | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 358                                                                   | 293                                                                  | 276                                                                                                                                                                                                   | 293    | 260                | 228  |
|              |                                                                                                                                         |                                                                            | heat-treated                                                                                                                                                                                                    | 300                                                          | 8                                        | 520  | 390                                   | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293                                                                   | 260                                                                  | 228                                                                                                                                                                                                   | 260    | 195                | 179  |
|              |                                                                                                                                         |                                                                            | heat-treated                                                                                                                                                                                                    | 350                                                          | 9                                        | 471  | 341                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260                                                                   | 179                                                                  |                                                                                                                                                                                                       | 228    | 163                |      |
|              | High alloy steel,                                                                                                                       |                                                                            | annealed                                                                                                                                                                                                        | 200                                                          | 10                                       | 601  | 471                                   | 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 390                                                                   | 341                                                                  | 293                                                                                                                                                                                                   | 358    | 276                | 260  |
|              | cast steel & tool ste                                                                                                                   | el                                                                         | heat-treated                                                                                                                                                                                                    | 325                                                          | 11                                       | 390  | 309                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260                                                                   | 179                                                                  |                                                                                                                                                                                                       | 228    | 163                |      |
|              | Cutter                                                                                                                                  | Max. a <sub>p</sub>                                                        | Carbid                                                                                                                                                                                                          | e Insert                                                     |                                          |      | F                                     | eed fz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z as i                                                                | nches                                                                | per to                                                                                                                                                                                                | ooth   | 1)                 |      |
|              | A90 1)                                                                                                                                  | .33                                                                        | ADHT                                                                                                                                                                                                            | -1003                                                        |                                          |      | .002                                  | .004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | .002                                                                 | .004                                                                                                                                                                                                  |        | .002               | .004 |
|              | A90 1)                                                                                                                                  | .55                                                                        | APHT / APNT                                                                                                                                                                                                     | / APNX-16                                                    | 04                                       | .003 | .006                                  | .009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .003                                                                  | .006                                                                 | .009                                                                                                                                                                                                  | .003   | .006               | .009 |
| M            | Moule Material                                                                                                                          |                                                                            | Condition                                                                                                                                                                                                       | Hardness<br>HB                                               | Mat C                                    |      |                                       | Cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ting S                                                                | peeds                                                                | in SF                                                                                                                                                                                                 | PM     |                    |      |
|              | Work Material 400 series Stainless                                                                                                      | & cast steel                                                               | ferrit./mart.                                                                                                                                                                                                   | 200                                                          | <b>Mat. Gr.</b> 12                       | 764  | 569                                   | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 585                                                                   | 439                                                                  | 374                                                                                                                                                                                                   | 374    | 293                | 276  |
|              | 400 Series Stanness                                                                                                                     | a cast steel                                                               | martensitic                                                                                                                                                                                                     | 240                                                          | 13                                       | 666  | 471                                   | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 504                                                                   | 358                                                                  | 293                                                                                                                                                                                                   | 325    | 260                | 228  |
|              | 300 series Stainless                                                                                                                    | & cast steel                                                               | austenitic                                                                                                                                                                                                      | 180                                                          | 14                                       | 683  | 423                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520                                                                   | 325                                                                  |                                                                                                                                                                                                       | 325    | 195                |      |
|              |                                                                                                                                         |                                                                            | UARE SHOULDER                                                                                                                                                                                                   |                                                              |                                          | 005  | 123                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ted                                                                   | 525                                                                  |                                                                                                                                                                                                       | 323    | 175                |      |
| ISO 513      | COTTING DA                                                                                                                              |                                                                            | CUTTER / MATERIAL                                                                                                                                                                                               | MILLS                                                        |                                          |      | RK150                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | RP350                                                                |                                                                                                                                                                                                       |        | 1) The             | cut  |
| 120 213      | Cth                                                                                                                                     |                                                                            |                                                                                                                                                                                                                 | - 1                                                          |                                          |      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                      |                                                                                                                                                                                                       |        | slot mi            |      |
|              | Cutter                                                                                                                                  | Max. a <sub>p</sub>                                                        |                                                                                                                                                                                                                 | e Insert                                                     |                                          | Fe   | ed fz                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s per                                                                 |                                                                      |                                                                                                                                                                                                       | l .    | 100% (             |      |
|              | A90 1)                                                                                                                                  | .55                                                                        | APHT / XPNT                                                                                                                                                                                                     | -1003<br>/ YDNY-160                                          | 0.4                                      | .004 | .003                                  | .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .004                                                                  | .004                                                                 | .006                                                                                                                                                                                                  | Г      | For pe             | rinł |
|              | A90 "                                                                                                                                   | .55                                                                        | APRI / APRI                                                                                                                                                                                                     | Hardness                                                     | J4                                       |      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                      |                                                                                                                                                                                                       | l .    | with th            | •    |
|              | Work Material                                                                                                                           |                                                                            | Condition                                                                                                                                                                                                       | HB                                                           | Mat. Gr.                                 | (    | Cutting                               | g Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eds in                                                                | SFPN                                                                 | 1                                                                                                                                                                                                     | t      | the tak            | ole  |
| K            | Grey cast iron                                                                                                                          |                                                                            | ferrit./pearl.                                                                                                                                                                                                  | 180                                                          | 15                                       | 959  | 699                                   | 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 439                                                                   | 325                                                                  | 276                                                                                                                                                                                                   | t      | the fol            | low  |
|              |                                                                                                                                         |                                                                            | pearlitic                                                                                                                                                                                                       | 260                                                          | 16                                       | 731  | 553                                   | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325                                                                   | 260                                                                  | 228                                                                                                                                                                                                   |        |                    |      |
|              | Nodular cast iron                                                                                                                       |                                                                            | ferritic                                                                                                                                                                                                        | 160                                                          | 17                                       | 813  | 601                                   | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 390                                                                   | 293                                                                  | 244                                                                                                                                                                                                   |        | Ratio              | 0    |
|              |                                                                                                                                         |                                                                            | pearlitic                                                                                                                                                                                                       | 250                                                          | 18                                       | 601  | 358                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 276                                                                   | 195                                                                  |                                                                                                                                                                                                       |        | a <sub>e</sub> : a | 1,   |
|              | Malleable cast iron                                                                                                                     |                                                                            | ferritic                                                                                                                                                                                                        | 130                                                          | 19                                       | 829  | 488                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 390                                                                   | 244                                                                  |                                                                                                                                                                                                       |        | 2%                 |      |
|              |                                                                                                                                         |                                                                            | pearlitic                                                                                                                                                                                                       | 230                                                          | 20                                       | 634  | 406                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 309                                                                   | 195                                                                  |                                                                                                                                                                                                       |        | 5%                 |      |
|              | CUTTING DA                                                                                                                              | TA FOR SQ                                                                  | <b>UARE SHOULDER</b>                                                                                                                                                                                            | MILLS                                                        |                                          |      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                      |                                                                                                                                                                                                       |        |                    |      |
|              |                                                                                                                                         |                                                                            | Crinz Biloczben                                                                                                                                                                                                 | MIILLS                                                       |                                          |      |                                       | Coa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted                                                                   |                                                                      |                                                                                                                                                                                                       |        |                    |      |
| ISO 513      |                                                                                                                                         | MILLING                                                                    | CUTTER / MATERIAL                                                                                                                                                                                               |                                                              |                                          |      | RM352                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                     | ALP-XI                                                               |                                                                                                                                                                                                       |        | 10%                | ,    |
| ISO 513      | Cutter                                                                                                                                  | Max. a <sub>p</sub>                                                        | CUTTER / MATERIAL                                                                                                                                                                                               | e Insert                                                     |                                          |      | RM352<br>ed fz                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s per                                                                 | tooth                                                                | 1)                                                                                                                                                                                                    |        |                    | -    |
| ISO 513      | A90 1)                                                                                                                                  | Max. a <sub>p</sub>                                                        | CUTTER / MATERIAL Carbid                                                                                                                                                                                        | e Insert<br>-1003                                            | 1604                                     | Fe   |                                       | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per                                                                 | tooth<br>.004                                                        | .006                                                                                                                                                                                                  |        | 10%                | ,    |
| ISO 513      |                                                                                                                                         | Max. a <sub>p</sub>                                                        | CUTTER / MATERIAL                                                                                                                                                                                               | e Insert<br>-1003                                            | -1604                                    | Fe   | ed fz                                 | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per                                                                 | .004<br>.009                                                         | .006                                                                                                                                                                                                  |        | 10%                | ,    |
| 50 513       | A90 1) A90 1) Work Material                                                                                                             | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid ADHT APHT / APHT / AP Condition                                                                                                                                                        | e Insert<br>-1003<br>PNT / APNX<br>Hardness<br>HB            | Mat. Gr.                                 | Fe   |                                       | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br><br>.004<br>eds in                                           | .004<br>.009<br>SFPN                                                 | .006<br>.012                                                                                                                                                                                          |        | 10%                | ,    |
| N            | A90 1) A90 1) Work Material Cast aluminium                                                                                              | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition  12% Si                                                                                                                                             | e Insert<br>-1003<br>PNT / APNX<br>Hardness<br>HB            | Mat. Gr.                                 | Fe   | eed fz<br><br><br>Cutting             | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br><br>.004<br>eds in                                           | .004<br>.009<br>SFPN<br>1983                                         | .006<br>.012<br><b>/</b><br>1658                                                                                                                                                                      |        | 10%                | ,    |
| ISO 513      | A90 1) A90 1) Work Material                                                                                                             | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition  12% Si age-hardened                                                                                                                                | e Insert -1003 PNT / APNX Hardness HB 75 90                  | Mat. Gr.<br>23<br>24                     | Fe ( | eed fz                                | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br>004<br>eds in<br>2763<br>2210                                | .004<br>.009<br>SFPM<br>1983<br>1625                                 | .006<br>.012<br><b>/</b><br>1658<br>1381                                                                                                                                                              |        | 10%                | ,    |
| N            | A90 1) A90 1) Work Material Cast aluminium alloys                                                                                       | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant                                                                                                           | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25                        | Fe ( | eed fz<br><br><br>Cutting             | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br>004<br>eds in<br>2763<br>2210<br>1381                        | .004<br>.009<br>SFPM<br>1983<br>1625<br>894                          | 1) .006 .012 // 1658 1381 683                                                                                                                                                                         |        | 10%                | ,    |
| N            | A90 1) A90 1) Work Material Cast aluminium                                                                                              | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition  12% Si age-hardened 12% Si heat resistant Red Brass, brass                                                                                         | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27                     | Fe ( | eed fz                                | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105                | .004<br>.009<br>SFPN<br>1983<br>1625<br>894<br>683                   | 1) .006 .012 // 1658 1381 683 0                                                                                                                                                                       |        | 10%                | ,    |
| N            | A90 1)  A90 1)  Work Material  Cast aluminium alloys  Copper & copper alloys                                                            | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze                                                                                   | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25                        | Fe ( | eed fz                                | g Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105<br>829         | .004<br>.009<br>SFPM<br>1983<br>1625<br>894                          | 1) .006 .012 // 1658 1381 683                                                                                                                                                                         |        | 10%                | ,    |
| N            | A90 1)  A90 1)  Work Material  Cast aluminium alloys  Copper & copper alloys                                                            | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid ADHT APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER                                                                       | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27                     | ((   | ced fz                                | inche g Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105<br>829         | 1983<br>1625<br>894<br>683<br>504                                    | 1) .006 .012  / 1658 1381 683 0 0                                                                                                                                                                     |        | 10%                | ,    |
| N            | A90 1)  A90 1)  Work Material  Cast aluminium alloys  Copper & copper alloys  CUTTING DA                                                | Max. a <sub>p</sub> .33 .55                                                | CUTTER / MATERIAL Carbid ADHT APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER CUTTER / MATERIAL                                                     | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27                     | ((   | ced fz                                | inche  g Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105<br>829<br>tted | 1983<br>1625<br>894<br>683<br>504                                    | 1) .006 .012 <b>/</b> .012 <b>/</b> .1658 .1381 .683 .0 .0 .0                                                                                                                                         |        | 10%                | ,    |
| N            | A90 1)  A90 1)  Work Material  Cast aluminium alloys  Copper & copper alloys  CUTTING DA                                                | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub>         | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER CUTTER / MATERIAL Carbid.                                           | e Insert -1003 PNT / APNX Hardness HB 75 90 130 90 100 MILLS | Mat. Gr. 23 24 25 27                     | ((   | ced fz                                | inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105<br>829<br>tted | 1983<br>1625<br>894<br>683<br>504<br>RM352<br>tooth                  | 1006<br>.012<br>//<br>1658<br>1381<br>683<br>0<br>0                                                                                                                                                   |        | 10%                | ,    |
| N            | A90 1)  A90 1)  Work Material  Cast aluminium alloys  Copper & copper alloys  CUTTING DA                                                | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub> .33     | CUTTER / MATERIAL Carbid. ADHT. APHT / APHT / AP  Condition  12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze  UARE SHOULDER  Cutter / MATERIAL Carbid. ADHT.                                  | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27 28                  | ((   | ced fz  Cutting  RP350  Red fz  .002  | inche  g Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s per<br>004<br>eds in<br>2763<br>2210<br>1381<br>1105<br>829<br>ted  | 1983<br>1625<br>894<br>683<br>504<br>RM352<br>tooth                  | 1) .006 .012 <b>/</b> .012 <b>/</b> .1658 .1381 .683 .0 .0 .0                                                                                                                                         |        | 10%                | ,    |
| N            | A90 1)  Work Material Cast aluminium alloys  Copper & copper alloys  CUTTING DA  Cutter A90 1) A90 1)                                   | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub>         | CUTTER / MATERIAL  Carbid- APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER CUTTER / MATERIAL  Carbid- APHT / APNT                                   | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27 28                  | Fe   | ced fz Cutting RP350 eed fz .002 .005 | g Spectrum Coaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s per004 eds in                                                       | 1983<br>1625<br>894<br>683<br>504<br>RM352<br>tooth<br>.002          | 1) .006 .012 .012 .006 .012 .006 .012 .006 .006 .012 .006 .012 .006 .006 .012 .006 .006 .012 .006 .006 .012 .006 .006 .012 .006 .006 .012 .006 .006 .012 .006 .012 .012 .012 .012 .012 .012 .012 .012 |        | 10%                | ,    |
| N            | A90 1)  Work Material Cast aluminium alloys  Copper & copper alloys  CUTTING DA  Cutter  A90 1)  A90 1)  Work Material                  | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub> .33 .55 | CUTTER / MATERIAL Carbid ADHT APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER CUTTER / MATERIAL Carbid ADHT APHT / APNT  Condition                  | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr.  23  24  25  27  28             | Fee  | ceed fz                               | g Spee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2763<br>2210<br>1381<br>1105<br>829<br>1ted<br>1<br>003               | 1983<br>1625<br>894<br>683<br>504<br>RRM352<br>tooth<br>.002<br>.005 | .006<br>.012<br>// 1658<br>1381<br>683<br>0<br>0<br>.003<br>.003                                                                                                                                      |        | 10%                | ,    |
| N            | A90 1)  Work Material Cast aluminium alloys  Copper & copper alloys  CUTTING DA  Cutter A90 1) A90 1)  Work Material High-temperature a | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub> .33 .55 | CUTTER / MATERIAL  Carbid- APHT / APHT / AP  Condition  12% Si age-hardened  12% Si heat resistant Red Brass, brass Bronze  UARE SHOULDER  CUTTER / MATERIAL  Carbid- ADHT- APHT / APNT  Condition age-hardened | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr. 23 24 25 27 28  04  Mat. Gr. 32 | Fee  |                                       | 2 speed of the control of the contro | 2763<br>2210<br>1381<br>1105<br>829<br>1ted<br>003                    | 1983<br>1625<br>894<br>683<br>504<br>RRM352<br>1002<br>.005          | .006<br>.012<br>//<br>1658<br>1381<br>683<br>0<br>0<br>0                                                                                                                                              |        | 10%                | ,    |
| N<br>ISO 513 | A90 1)  Work Material Cast aluminium alloys  Copper & copper alloys  CUTTING DA  Cutter  A90 1)  A90 1)  Work Material                  | Max. a <sub>p</sub> .33 .55  TA FOR SQ MILLING Max. a <sub>p</sub> .33 .55 | CUTTER / MATERIAL Carbid ADHT APHT / APHT / AP  Condition 12% Si age-hardened 12% Si heat resistant Red Brass, brass Bronze UARE SHOULDER CUTTER / MATERIAL Carbid ADHT APHT / APNT  Condition                  | e Insert -1003 PNT / APNX Hardness HB                        | Mat. Gr.  23  24  25  27  28             | Fee  | ceed fz                               | g Spee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2763<br>2210<br>1381<br>1105<br>829<br>1ted<br>1<br>003               | 1983<br>1625<br>894<br>683<br>504<br>RRM352<br>tooth<br>.002<br>.005 | .006<br>.012<br>// 1658<br>1381<br>683<br>0<br>0<br>.003<br>.003                                                                                                                                      |        | 10%                | ,    |

1) The cutting data given is valid for slot milling with full width of cut ae = 100% of the cutter diameter.

For peripheral and shoulder milling with the A90 end mill, the figures in the table should be converted using the following correction factors:

| Ratio<br>a <sub>e</sub> : d <sub>1</sub> | f <sub>z</sub><br>factor | SFPM<br>factor |
|------------------------------------------|--------------------------|----------------|
| 2%                                       | 3.5                      | 1.6            |
| 5%                                       | 3                        | 1.5            |
| 10%                                      | 2                        | 1.4            |
| 20%                                      | 1.5                      | 1.3            |
| ≥ 40%                                    | 1                        | 1.1            |

tel: 888.554.7264 70 Rani Tool Corp. fax: 860.665.7319

### for R360 Milling Cutters

|         | CUTTING DATA F                                     | OR ROUNI            | D INSERT MILLING          | CUTTE          | RS       |            |            |            | C          | oate       | d          |            |                 |                            | Un                            | icoat      | ed         |
|---------|----------------------------------------------------|---------------------|---------------------------|----------------|----------|------------|------------|------------|------------|------------|------------|------------|-----------------|----------------------------|-------------------------------|------------|------------|
| ISO 513 |                                                    | MILLING             | CUTTER / MATERIAL         |                |          |            | RP35       | 0          |            | RP354      | ŀ          |            | RP352           |                            |                               | RP35       |            |
|         | Cutter                                             | Max. a              | Carbid                    | e Insert       |          |            | _          | _          | Fe         | ed fz      | inche      | s per      | tooth           | 1)                         |                               |            |            |
|         |                                                    | .157 / .197         | RD0802MOT                 | / RD1003       | вмот     | .003       | .006       | .008       | .003       | .006       | .008       | .003       | .006            | .008                       | .003                          | .006       | .008       |
|         | R360 1)                                            | .236                |                           | о4МОТ-Х        |          | .004       | .009       | .012       | .004       | .009       | .012       | .004       | .009            | .012                       | .004                          | .009       | .012       |
|         |                                                    | .315                | RCMT-16                   | 06MOT-X        |          | .005       | .010       | .014       | .005       | .010       | .014       | .005       | .010            | .014                       | .005                          | .010       | .014       |
|         |                                                    |                     |                           | Hardness       |          |            |            |            |            |            | - C        | ada iu     | CEDIV           |                            |                               | <u> </u>   |            |
|         | Work Material                                      |                     | Condition                 | НВ             | Mat. Gr. |            |            |            |            | uttin      | g spe      | eas ir     | SFPN            | 1                          |                               |            |            |
|         |                                                    | 0.25% C             | annealed                  | 125            | 1        | 1333       | 1056       | 910        | 1170       | 910        | 780        | 813        | 699             | 650                        | 715                           | 634        | 585        |
|         | Unalloyed steel, cast steel and                    | ≥ 0.25% C           | annealed                  | 190            | 2        | 1056       | 813        | 699        | 813        | 618        | 536        | 585        | 488             | 455                        | 520                           | 423        | 390        |
| P       | free cutting steel                                 | 0.55% C             | heat-treated              | 250            | 3        | 894        | 683        | 601        | 683        | 520        | 455        | 488        | 423             | 390                        | 423                           | 325        | 293        |
|         |                                                    | ≥ 0.55% C           | annealed                  | 220            | 4        | 910        | 699        | 601        | 699        | 536        | 455        | 520        | 455             | 423                        | 455                           | 358        | 325        |
|         |                                                    |                     | heat-treated              | 300            | 5        | 764        | 553        |            | 585        | 423        |            | 423        | 358             |                            | 358                           | 293        |            |
|         | Low alloy steel                                    |                     | annealed                  | 200            | 6        | 1024       | 764        | 634        | 780        | 585        | 488        | 585        | 488             | 455                        | 520                           | 423        | 390        |
|         | and cast steel                                     |                     | heat-treated              | 275            | 7        | 764        | 601        | 520        | 585        | 455        | 390        | 455        | 390             | 358                        | 390                           | 325        | 293        |
|         |                                                    |                     | heat-treated              | 300            | 8        | 683        | 520        |            | 520        | 390        |            | 390        | 325             |                            | 325                           | 260        |            |
|         |                                                    |                     | heat-treated              | 350            | 9        | 601        | 423        |            | 455        | 325        |            | 325        | 228             |                            | 293                           | 195        |            |
|         | High alloy steel,                                  |                     | annealed                  | 200            | 10       | 764        | 618        | 553        | 585        | 471        | 423        | 520        | 439             | 390                        | 455                           | 358        | 325        |
|         | cast steel & tool stee                             | el                  | heat-treated              | 325            | 11       | 520        | 390        |            | 390        | 293        |            | 325        | 228             |                            | 293                           | 195        |            |
|         | Cutter                                             | Max. a <sub>p</sub> | Carbid                    | e Insert       |          |            |            |            | Fee        | d fz a     | s incl     | nes pe     | r toot          | h 1)                       |                               |            |            |
|         |                                                    | .157 / .197         | RD0802MOT                 | / RD1003       | вмот     | .003       | .006       | .007       |            |            |            | .003       | .006            | .007                       | .003                          | .006       | .007       |
|         | R360 1)                                            | .236                | RD120                     | о4МОТ-Х        |          | .004       | .008       | .011       | .004       | .008       | .011       | .004       | .008            | .011                       | .004                          | .008       | .011       |
| RA.     |                                                    | .315                | RCMT-1606MOT-X            | / RD160        | 5MOT-X   | .005       | .009       | .013       | .005       | .009       | .013       | .005       | .009            | .013                       | .005                          | .010       | .013       |
| IVI     |                                                    |                     |                           | Hardness       |          |            |            |            | (          | uttin      | g Spe      | eds ir     | SFPN            | 1                          |                               |            |            |
|         | Work Material 400 series Stainless                 | P. cast stool       | Condition                 | HB             | Mat. Gr. | 075        | 010        | 624        | 740        | 560        | 400        | 552        | 400             | 455                        | 400                           | 200        | 250        |
|         | 400 series stailless                               | & Cast steel        | ferrit./mart.             | 200            | 12       | 975<br>845 | 910<br>618 | 634<br>520 | 748<br>650 | 569<br>471 | 488<br>390 | 553<br>455 | 488<br>390      | 455<br>358                 | 488                           | 390<br>325 | 358<br>293 |
|         | 300 series Stainless                               | & cast steel        | martensitic<br>austenitic | 180            | 14       | 423        | 260        | 320        | 325        | 195        | 390        | 228        | 130             | 330                        | 195                           | 130        | 293        |
|         |                                                    |                     | D INSERT MILLING          |                |          |            | _          |            | 323        | 193        |            | 220        | 130             |                            | 193                           | 130        |            |
|         | COTTING DATA P                                     |                     |                           | COTTE          | n.J      |            | oate       |            |            |            |            | 1          | ) The           | food                       | c nor                         | tooth      | , f-, -    |
| ISO 513 |                                                    |                     | CUTTER / MATERIAL         |                |          |            | RP35       |            |            |            | 4)         | 1          | ace m           |                            | •                             |            |            |
|         | Cutter                                             | Max. a <sub>p</sub> |                           | e Insert       |          |            |            | _          | s per      | tooth      |            |            | he cu           | _                          |                               |            |            |
|         |                                                    | .157 / .197         | RD0802MOT                 |                | вмот     | .003       | .006       | .008       |            |            |            | l          | p. Fo           |                            |                               |            |            |
|         | R360 1)                                            | .236                |                           | 04MOT-X        |          | .004       | .009       | .012       |            |            |            | I .        | he fig          |                            |                               |            |            |
|         |                                                    | .315                | RCMT-1606MOT-X            |                | ISMOT-X  | .005       | .010       | .014       |            |            |            | I          | onvei           |                            |                               |            |            |
| 1/      | Work Material                                      |                     | Condition                 | Hardness<br>HB | Mat. Gr. | (          | Cuttin     | g Spe      | eds in     | SFPN       | Λ          | b          | elow.           | (d =                       | diam                          | neter      | of in      |
| K       | Grey cast iron                                     |                     | ferrit./pearl.            | 180            | 15       | 1235       | 910        | 764        |            |            |            | d          | liame           | ter).                      |                               |            |            |
|         |                                                    |                     | pearlitic                 | 260            | 16       | 943        | 699        | 601        |            |            |            | т          | he ax           | ial fe                     | ed in                         | nlun       | nae r      |
|         | Nodular cast                                       |                     | ferritic                  | 160            | 17       | 1056       | 764        | 634        |            |            |            | 1          | hould           |                            |                               | •          | _          |
|         | iron                                               |                     | pearlitic                 | 250            | 18       | 764        | 471        |            |            |            |            |            |                 |                            |                               |            |            |
|         | Malleable cast iron                                |                     | ferritic                  | 130            | 19       | 1056       | 634        |            |            |            |            | i L        | fz              | facto                      | ors fo                        | or rat     | io a       |
|         |                                                    |                     | pearlitic                 | 230            | 20       | 945        | 520        |            |            |            |            |            | Depth           | of                         |                               | ae         | e : d1     |
|         | <b>CUTTING DATA F</b>                              | OR ROUNI            | O INSERT MILLING          | CUTTE          | RS       | C          | oate       | d          | Ur         | icoat      | ed         | ı          | cut (           | ар                         | 5%                            | 10%        | 20         |
| ISO 513 |                                                    | MILLING             | CUTTER / MATERIAL         |                |          |            | ALP-X      | L          |            | TK20       |            | 1          | 5% o            | f d                        | 9                             | 6.3        | 4.         |
|         | Cutter                                             | Max. a              |                           | e Insert       |          |            |            |            | s per      |            | 1)         |            | 10% (           | of d                       | 6.3                           | 4.3        | 3.         |
|         |                                                    | .157 / .197         | RD0802MOT                 |                | вмот     | .003       | .006       | .008       | .003       | .006       | .008       | l          | 20% c           | of d                       | 4.3                           | 3.2        | 2.         |
|         | R360 1)                                            | .236                |                           | 04MOT-X        |          | .004       | .009       | .012       | .004       | .009       | .012       | L          | 40% (           | of d                       | 3.2                           | 2.2        | 1.         |
|         |                                                    | .315                | RCMT-1606MOT-X            | / RD160        | 5MOT-X   | .005       | .010       | .014       | .005       | .010       | .014       | Г          | SFI             | PM f                       | actor                         | s for      |            |
| - N. II |                                                    | •                   | •                         | Hardness       |          |            | Cuttin     | a Sna      | eds in     | CEDA       | Л          | i I        |                 |                            | fz fac                        |            | _          |
|         | Work Material                                      |                     | Condition                 | НВ             | Mat. Gr. |            |            |            |            |            |            | <b> </b>   | fz fa           |                            |                               | M facto    | _          |
|         | Cast aluminium alloys                              | ≤                   | 12% Si                    | 75             | 23       | 3250       |            | 1950       |            | 2340       |            |            | 9               | )                          |                               | 1.6        |            |
|         | unoys                                              |                     | age-hardened              | 90             | 24       | 2600       |            | 1625       | 2600       | 1918       |            |            | 6.              | 3                          |                               | 1.5        |            |
|         |                                                    | ,                   | 12% Si heat resistant     | 130            | 25       | 1625       |            |            | 1625       | 1056       | 813        |            | 4.              | 3                          |                               | 1.4        |            |
|         | Copper & copper                                    |                     | Red Brass, brass          | 90             | 27       | 1300       |            |            | 1300       | 813        |            |            | 3.              | 2                          |                               | 1.3        |            |
|         | alloys                                             |                     | Bronze                    | 100            | 28       | 975        | 585        |            | 975        | 585        |            | 1          | 2.              | 2                          |                               | 1.2        |            |
|         | CUTTING DATA F                                     |                     | D INSERT MILLING          | CUTTE          | RS       | (          | oate       | d          |            |            |            |            | 1.              | 6                          |                               | 1.1        |            |
| ISO 513 |                                                    | MILLING             | CUTTER / MATERIAL         |                |          |            | RP35       | 0          |            |            |            |            | 1.              | .1                         |                               | 1          |            |
|         | Cutter                                             | Max. a <sub>p</sub> | Carbid                    | e Insert       |          | Fe         | ed fz      | inche      | s per      | tooth      | 1)         |            |                 |                            |                               |            |            |
|         |                                                    | .157 / .197         | RD0802MOT                 | / RD1003       | вмот     | .003       | .005       | .006       |            |            |            |            |                 |                            |                               |            |            |
|         | R360 1)                                            | .236                |                           | 04MOT-X        |          | .004       | .006       | .007       |            |            |            |            |                 |                            | R360                          | Inse       | rt ~       |
|         |                                                    | .315                | RCMT-1606MOT-X            | / RD160        | 5МОТ-Х   | .005       | .007       | .009       |            |            |            |            |                 |                            |                               | 50         |            |
| 6       |                                                    |                     |                           | Hardness<br>HB |          | (          | Cuttin     | g Spe      | eds in     | SFPN       | Л          |            | 1.2             | 2027                       |                               |            |            |
|         | Mante Santa A.                                     |                     | Compliate                 |                |          |            |            |            |            |            |            | I          | Le              | gend:                      |                               |            | _          |
| 3       | Work Material                                      | lovs                | Condition                 |                | Mat. Gr. | 120        | 00         | 01         |            |            |            | 1          | 26              | - widt                     | h of c                        | ut         |            |
| 3       | Work Material High-temperature al Ni- or Co- based | loys                | age-hardened              | 280            | 32       | 130        | 98         | 81         |            |            |            |            |                 |                            | th of cu                      |            |            |
| 3       | High-temperature al                                | loys                | age-hardened<br>annealed  | 280<br>250     | 32<br>33 | 104        | 78         | 65         |            |            |            |            | ap<br>d -       | - dep                      | th of c                       | ut<br>eter |            |
| 3       | High-temperature al                                | loys                | age-hardened              | 280            | 32       | -          |            |            |            |            |            |            | ap<br>d -<br>Ød | - dep<br>inser<br>11 - eff | th of co<br>t diam<br>fective | ut         |            |

1) The feeds per tooth fz are valid for face milling with width of cut ae > 40% of the cutter diameter and max. depth of cut ap. For smaller widths and depths of cut, the figures in the tables should be converted using correction factors tables below. (d = diameter of insert, d1 = cutterdiameter).

The axial feed in plunge milling should be reduced by approx. 40%.

| f <sub>z</sub> fact | tors fo | or rati | o ae: | d <sub>1</sub> |
|---------------------|---------|---------|-------|----------------|
| Depth of            |         | ae.     | : d1  |                |
| cut ap              | 5%      | 10%     | 20%   | ≥40%           |
| 5% of d             | 9       | 6.3     | 4.3   | 3.2            |
| 10% of d            | 6.3     | 4.3     | 3.2   | 2.2            |
| 20% of d            | 4.3     | 3.2     | 2.2   | 1.6            |
| 40% of d            | 3.2     | 2.2     | 1.6   | 1.1            |

|                       | ctors for<br>fz factors |
|-----------------------|-------------------------|
| f <sub>z</sub> factor | SFPM factor             |
| 9                     | 1.6                     |
| 6.3                   | 1.5                     |
| 4.3                   | 1.4                     |
| 3.2                   | 1.3                     |
| 2.2                   | 1.2                     |
| 1.6                   | 1.1                     |
| 1.1                   | 1                       |



### for BNK Milling Cutters

| TABLE A: CUTTING D                     | DATA FOR BNK BALL | NOSE MILLING CUTT | TERS       |
|----------------------------------------|-------------------|-------------------|------------|
| Material Application                   | Grade             | SFPM              | FEED (IPR) |
| Carbon, Alloy and Tool Steels          | SLX               | 350-600           | .006"016"  |
| Cast Steel                             | SLX               | 400-700           | .006"020"  |
| Steels, Irons and Graphite             | MPX               | 600-1200          | .005"020"  |
| Stainless Steels and Refractory Alloys | MPX / MPS         | 400-800           | .003"010"  |
| Aluminum, Titanium and Copper Alloys   | MPX               | 500-1000          | .010"020"  |

| TABL            | E B: E | FFEC                                                                                       | TIVE ( | CUTTI | NG D | IAMET | ERS   |  |  |  |
|-----------------|--------|--------------------------------------------------------------------------------------------|--------|-------|------|-------|-------|--|--|--|
| Depth<br>of cut |        | Effective cutter diameter d <sub>1</sub> eff<br>for cutter nominal diameter d <sub>1</sub> |        |       |      |       |       |  |  |  |
| аp              | .312   | .375                                                                                       | .500   | .625  | .750 | 1.000 | 1.250 |  |  |  |
| .010"           | .110   | .121                                                                                       | .140   | .157  | .172 | .199  | .223  |  |  |  |
| .020"           | .153   | .169                                                                                       | .196   | .220  | .242 | .280  | .314  |  |  |  |
| .035"           | .197   | .218                                                                                       | .255   | .287  | .316 | .368  | .412  |  |  |  |
| .050"           | .229   | .255                                                                                       | .300   | .339  | .374 | .436  | .490  |  |  |  |
| .075"           | .267   | .300                                                                                       | .357   | .406  | .450 | .527  | .594  |  |  |  |
| .100"           | .292   | .332                                                                                       | .400   | .458  | .510 | .600  | .678  |  |  |  |
| .125"           | .306   | .354                                                                                       | .433   | .500  | .559 | .661  | .750  |  |  |  |
| .156"           | .312   | .370                                                                                       | .464   | .541  | .609 | .726  | .827  |  |  |  |
| .188"           |        | .375                                                                                       | .484   | .573  | .650 | .781  | .893  |  |  |  |
| .250"           |        |                                                                                            | .500   | .612  | .707 | .886  | 1.000 |  |  |  |
| .312"           |        |                                                                                            |        | .625  | .734 | .927  | 1.082 |  |  |  |
| .375"           |        |                                                                                            |        |       | .750 | .968  | 1.146 |  |  |  |
| .500"           |        |                                                                                            |        |       |      | 1.000 | 1.225 |  |  |  |
| .625"           |        |                                                                                            |        |       |      |       | 1.250 |  |  |  |

| TABLE        | E C: Fl | EED R | ATE A    | DJUS   | TMEN    | T FAC | TOR   |
|--------------|---------|-------|----------|--------|---------|-------|-------|
| Depth of cut |         | For   | cutter n | ominal | diamete | er d1 |       |
| ар           | .312    | .375  | .500     | .625   | .750    | 1.000 | 1.250 |
| .010"        | 2.80    | 3.10  | 3.60     | 4.00   | 4.40    | 5.00  | 5.60  |
| .020"        | 2.04    | 2.22  | 2.56     | 2.86   | 3.13    | 3.57  | 4.00  |
| .035"        | 1.71    | 1.85  | 2.11     | 2.36   | 2.57    | 2.92  | 3.28  |
| .050"        | 1.37    | 1.47  | 1.66     | 1.85   | 2.00    | 2.27  | 2.56  |
| .075"        | 1.18    | 1.25  | 1.41     | 1.54   | 1.66    | 1.89  | 2.13  |
| .100"        | 1.08    | 1.14  | 1.25     | 1.37   | 1.47    | 1.66  | 1.85  |
| .125"        | 1.02    | 1.06  | 1.15     | 1.25   | 1.33    | 1.52  | 1.67  |
| .156"        | 1.00    | 1.01  | 1.08     | 1.15   | 1.23    | 1.37  | 1.52  |
| .188"        |         | 1.00  | 1.03     | 1.09   | 1.15    | 1.28  | 1.41  |
| .250"        |         |       | 1.00     | 1.02   | 1.06    | 1.15  | 1.25  |
| .312"        |         |       |          | 1.00   | 1.01    | 1.08  | 1.15  |
| .375"        |         |       |          |        | 1.00    | 1.03  | 1.09  |
| .500"        |         |       |          |        |         | 1.00  | 1.02  |
| .625"        |         |       |          |        |         |       | 1.00  |







### **Cutting Data Compensation**

- 1. Select the diameter of the tool to be used
- 2. Determine the Depth of Cut (ap) to be used
- 3. Refer to Table B to determine the Effective Cutting Diameter d₁-eff
- Refer to Table A to determine the Surface Footage (SFPM) and Feed per Revolution (IPR)
- 5. Calculate the RPM =  $(SFPM \times 3.82) / d_1$ -eff
- 6. Refer to Table C to determine the Feed Rate Adjustment Factor IPRADJ = IPR x Feed Rate Adjustment Factor
- 7. Calculate the IPM (Inches per Minute)
  IPM = RPM x IPRADJ

#### **Technical Considerations**

- Always ensure that insert pockets are clean and free of debris or burrs
- Utilize holders that are stable and in good condition
- Clean and recoat screw with anti-seize lubricant during each index
- For optimum results, replace holders after 100 inserts
- Hold the insert in place during the locking process; check for interference or damage
- Do not use a pipe or other extensions to tighten the locking screw
- Generally speaking, drivers supplied with the tools provide proper torque
- If the torque wrench is available, follow the recommended torque specifications

72 tel: 888.554.7264 Rani Tool Corp. fax: 860.665.7319

### for PC, S45, S45F, & TC90 Milling Cutters

|         |                                      |         | CUTTIN        | NG DATA FO | OR PC, S45, | S45F & TC     | 90         |         |            |            |            |
|---------|--------------------------------------|---------|---------------|------------|-------------|---------------|------------|---------|------------|------------|------------|
| ISO 513 | Material                             | 7       | TC90 End Mill | s          |             | S45 End Mills | ;          |         | SF45 Fo    | ice Mills  |            |
|         |                                      | MILLING | SF            | РМ         | MILLING     | SF            | РМ         | MILLING |            | SFPM       |            |
|         |                                      | Feed 1) | Coated        | Uncoated   | Feed 1)     | Coated        | Uncoated   | Feed 1) | CVDCoated  | PVD Coated | Uncoated   |
| D       | Steel, unalloyed<br>low carbon       | .004012 | 325 - 731     | 260 - 585  | .004012     | 325 - 731     | 260 - 585  | .004020 | 400 - 1100 | 350 - 900  |            |
| P       | Steel, unalloyed<br>or low-alloy     | .004012 | 284 - 650     | 228 - 520  | .004012     | 284 - 650     | 228 - 520  | .003013 | 300 - 900  | 300 - 700  |            |
|         | Steel alloy and tool steels          | .004010 | 244 - 569     | 195 - 455  | .004012     | 244 - 569     | 195 - 455  | .003014 | 250 - 650  | 175 - 400  | -          |
|         | High tensile steels                  | .004008 | 244 - 488     | 195 - 390  | .004010     | 244 - 488     | 195 - 390  | .003006 |            | 300 - 500  |            |
|         |                                      | MILLING | SF            | PM         | MILLING     | SF            | PM         | MILLING | SF         | PM         |            |
|         |                                      | Feed 1) | Coated        | Uncoated   | Feed 1)     | Coated        | Uncoated   | Feed 1) | CVDCoated  | PVD Coated | Uncoated   |
| M       | Corrosion-resistant steel            | .004008 | 203 - 569     | 163 - 455  | .004010     | 203 - 569     | 163 - 455  | .003012 | 250 - 650  | 200 - 600  |            |
|         | Cast steel,<br>medium strength       | .004008 | 244 - 488     | 195 - 390  | .004012     | 244 - 488     | 195 - 390  | .003009 | 300 - 600  | 250 - 550  |            |
|         |                                      | MILLING | SF            | PM         | MILLING     | SF            | PM         | MILLING | SF         | PM         |            |
| K       |                                      | Feed 1) | Coated        | Uncoated   | Feed 1)     | Coated        | Uncoated   | Feed 1) | CVDCoated  | PVD Coated | Uncoated   |
| -       | Grey cast iron,<br>medium hardness   | .004010 | 284 - 488     | 228 - 390  | .004016     | 284 - 488     | 228 - 390  | .003009 |            | 300 - 900  | 250 - 750  |
|         |                                      | MILLING | SF            | PM         | MILLING     | SF            | РМ         | MILLING | SF         | PM         |            |
|         |                                      | Feed 1) | Coated        | Uncoated   | Feed 1)     | Coated        | Uncoated   | Feed 1) | CVDCoated  | PVD Coated | Uncoated   |
|         | Brass                                | .004010 | 406 - 731     | 325 - 585  | .004010     | 406 - 731     | 325 - 585  | .004015 |            |            | 700 - 2000 |
| N       | Mg-alloyed                           | .004006 | 1219 - 3250   | 975 - 2600 | .004006     | 1219 - 3250   | 975 - 2600 | .004015 |            |            | 700 - 2000 |
| 14      | Si-alloyed                           | .002006 | 1016 - 2438   | 813 - 1950 | .002006     | 1016 - 2438   | 813 - 1950 | .004015 |            |            | 700 - 2000 |
|         | Al-alloyed,<br>hypo-eutectic         | .004008 | 1219 - 4063   | 975 - 3250 | .004008     | 1219 - 4063   | 975 - 3250 | .003012 |            |            | 700 - 1500 |
|         | Al-alloyed,<br>hyper-eutectic Si>12% | .004008 | 1219 - 2031   | 975 - 1625 | .004008     | 1219 - 2031   | 975 - 1625 | .003012 |            |            | 700 - 1500 |

### for CP90 Face Mills

| Materials                            | Conditions of chip removal                                                                                                                                  | Range of application<br>N01 - N40 |                 |                   |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|-------------------|--|--|--|--|--|
|                                      | High-speed milling                                                                                                                                          | N01-N20 (HSC)                     | N20-N30 (HSC)   | N25-N40 (HSC+HPC) |  |  |  |  |  |
|                                      | riigii-speed miiiirig                                                                                                                                       | 100μin - 200μin                   | 100μin - 200μin | 100μin - 200μin   |  |  |  |  |  |
| N                                    | unstable                                                                                                                                                    | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
|                                      | (varied depth)                                                                                                                                              | 2600-14625                        | 2600-13000      | 2600-8125         |  |  |  |  |  |
| heavily + slightly PDC-S PDC-S PDC-S | PDC-S                                                                                                                                                       |                                   |                 |                   |  |  |  |  |  |
|                                      | 2600-8125                                                                                                                                                   |                                   |                 |                   |  |  |  |  |  |
|                                      | heavily + slightly                                                                                                                                          | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
|                                      | interrupted                                                                                                                                                 | 2600-14625                        | 2600-13000      | 2600-8125         |  |  |  |  |  |
|                                      | unstable                                                                                                                                                    | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
| N                                    | (varied depth)                                                                                                                                              | 2600-13000                        | 2600-11375      | 2600-8775         |  |  |  |  |  |
| Nonferrous metals                    | continuous                                                                                                                                                  | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
| Aluminum alloys with less than 12%   | Continuous                                                                                                                                                  | 2600-13000                        | 2600-11375      | 2600-8775         |  |  |  |  |  |
| silicon                              | heavily + slightly                                                                                                                                          | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
|                                      | (varied depth) 2600-13000 2600-11375 2600-8775  ous metals um alloys continuous 2600-13000 2600-11375 2600-8775  2600-13000 2600-11375 2600-8775  2600-8775 | 2600-8775                         |                 |                   |  |  |  |  |  |
|                                      | unstable                                                                                                                                                    | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
| N                                    | (varied depth)                                                                                                                                              | 2600-9750                         | 2600-8125       | 2275-7150         |  |  |  |  |  |
| Nonferrous metals Copper and copper  | continuous                                                                                                                                                  | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
| alloys                               | Continuous                                                                                                                                                  | 2600-9750                         | 2600-8125       | 2275-7150         |  |  |  |  |  |
| brass, bronze,<br>precious metals    | heavily + slightly                                                                                                                                          | PDC-S                             | PDC-S           | PDC-S             |  |  |  |  |  |
| precious inetais                     | interrupted                                                                                                                                                 | 2600-9750                         | 2600-8125       | 2275-7150         |  |  |  |  |  |
|                                      |                                                                                                                                                             | Coolant: flood or through coo     | lant            |                   |  |  |  |  |  |

### for T45V Face Mills

|        | CUTTING DATA FO                       | OR T45V END I       | MILLS AND FACE N          | AILLS               |                    |                      | Coated                 |                                                              | Unco            | oated                   |  |
|--------|---------------------------------------|---------------------|---------------------------|---------------------|--------------------|----------------------|------------------------|--------------------------------------------------------------|-----------------|-------------------------|--|
| 50 513 |                                       | MILLING CU          | JTTER / MATERIAL          |                     |                    | SLK                  | SLX                    | SLP                                                          | SP25            | SK35                    |  |
|        | Cutter                                | Max. a <sub>p</sub> | Carb                      | ide Insert          |                    |                      | Feed fz                | inches per t                                                 | ooth 2)         |                         |  |
|        | T45VE/VF                              | .140                | OEC                       | C/RECX 43           |                    |                      | .003010                | .003010                                                      | .003010         |                         |  |
|        | T45VE/VF                              | .170                | OEC                       | C/RECX 53           |                    |                      | .003012                | .003012                                                      | .003012         |                         |  |
|        | T45VE/VF                              | .210                | OEC)                      | C/RECX 63           |                    |                      | .003015                | .003015                                                      | .003015         |                         |  |
|        | Moule Material                        |                     | Candidan                  | Hardness            | M=4 C::            |                      | Cutting                | g Speeds in                                                  | SFPM            |                         |  |
|        | Work Material Carbon steel, <         | 0.25% C             | Condition<br>annealed     | <b>HB</b> 125       | Mat. Gr.           |                      | 800 - 1350             | 700 - 1000                                                   | 350 - 700       |                         |  |
|        |                                       | 0.25% C             | annealed                  | 190                 | 2                  |                      | 800 - 1350             | 700 - 1000                                                   | 350 - 700       |                         |  |
| D      |                                       | 0.55% C             | heat-treated              | 250                 | 3                  |                      | 700 - 1100             | 630 - 950                                                    | 330 - 675       |                         |  |
|        | cutting steel >                       | 0.55% C             | annealed                  | 220                 | 4                  |                      | 800 - 1350             | 700 - 1000                                                   | 350 - 700       |                         |  |
|        |                                       |                     | heat-treated              | 300                 | 5                  |                      | 700 - 1100             | 630 - 950                                                    | 330 - 675       |                         |  |
|        | Low alloy steel                       |                     | annealed                  | 200                 | 6                  |                      | 800 - 1350             | 700 - 1000                                                   | 350 - 700       |                         |  |
|        | and cast steel                        |                     | heat-treated              | 275                 | 7                  |                      | 700 - 1100             | 630 - 950                                                    | 330 - 675       |                         |  |
|        |                                       |                     | heat-treated              | 300                 | 8                  |                      | 650 - 1000             | 620 - 900                                                    | 300 - 650       |                         |  |
|        |                                       |                     | heat-treated              | 350                 | 9                  |                      | 600 - 950              | 580 - 580                                                    | 300 - 650       |                         |  |
|        | High alloy steel,                     |                     | annealed                  | 200                 | 10                 |                      | 800 - 1150             | 700 - 950                                                    | 350 - 650       |                         |  |
|        |                                       | 84                  | heat-treated              | 325                 | 11                 |                      | 700 -1000              | 650 - 900                                                    | 300 - 600       |                         |  |
|        | Cutter                                | Max. a <sub>p</sub> |                           | ide Insert          |                    | .003006              | .003006                | s inches per<br>.003006                                      |                 | .003006                 |  |
|        | T45VE/VF<br>T45VE/VF                  | .140                |                           | K/RECX 43           |                    | .003006              | .003006                | .003006                                                      | .003006         | .003006                 |  |
|        | T45VE/VF                              | .210                |                           | C/RECX 63           |                    | .003012              | .003012                | .003012                                                      | .003012         | .003008                 |  |
| M      | 11312/11                              |                     | 010                       | Hardness            |                    | 1005 1012            |                        |                                                              |                 | 1003 1012               |  |
|        | Work Material                         |                     | Condition                 | НВ                  | Mat. Gr.           |                      | Cutting                | g Speeds in                                                  | SFPINI          |                         |  |
|        | 400 series Stainless & co             | ast steel           | ferrit./mart.             | 200                 | 12                 |                      | 850 - 1200             | 560 - 900                                                    | 265 - 535       |                         |  |
|        |                                       |                     | martensitic               | 240                 | 13                 |                      | 580 - 950              | 540 - 850                                                    | 245 - 500       |                         |  |
|        | 300 series Stainless & co             |                     | austenitic                | 180                 | 14                 | 800 - 1100           |                        |                                                              |                 | 400 - 600               |  |
|        | CUTTING DATA FO                       | R RT45V END         | MILLS AND FACE I          | MILLS               |                    | Coated               | Uncoated               | FOR USE                                                      | E WITH RE       | CX INSER                |  |
| 0 513  |                                       | MILLING CU          | JTTER / MATERIAL          |                     |                    | SLK                  | SK35                   | 1 '                                                          | eds per too     |                         |  |
|        | Cutter                                | Max. a              | Carb                      | ide Insert          |                    |                      | nches per              | face milling with width of cut 40% of the cutter diameter an |                 |                         |  |
|        |                                       | r                   |                           |                     |                    |                      | th <sup>2)</sup>       | depth of                                                     |                 | iameter ar              |  |
|        | T45VE/VF                              | .140                | OEC                       | .003010             | .003010            | · '                  |                        |                                                              |                 |                         |  |
|        | T45VE/VF<br>T45VE/VF                  | .170                | OEC                       | .003012             | .003012            | +                    | ler widths a           | •                                                            |                 |                         |  |
|        | 145VE/VF                              | .210                | OEC/                      | K/RECX 63  Hardness |                    |                      |                        | converted using correction fac                               |                 |                         |  |
| K      | Work Material                         |                     | Condition                 | HB                  | Mat. Gr.           | Cutting Spe          | eds in SFPM            | ı                                                            | elow. $(d = d)$ |                         |  |
|        | Grey cast iron                        |                     | ferrit./pearl.            | 180                 | 15                 | 550 - 1000           | 230 - 465              | d1 = cut                                                     | ter diamet      | er).                    |  |
|        |                                       |                     | pearlitic                 | 260                 | 16                 | 500 - 900            | 230 - 465              | f <sub>z</sub> fa                                            | ctors for r     | atio a <sub>e</sub> : d |  |
|        | Nodular cast iron                     |                     | ferritic                  | 160                 | 17                 | 500 - 1000           | 230 - 465              | Depth of                                                     | f               | ae: d1                  |  |
|        | Malleable cast iron                   |                     | pearlitic                 | 250                 | 18                 | 450 - 850            | 230 - 465              | cut a <sub>p</sub>                                           |                 | 0%   20%   2            |  |
|        | Maneable cast from                    |                     | ferritic<br>pearlitic     | 130<br>230          | 19<br>20           | 550 - 1100           | 250 - 500<br>230 - 465 | 5% of d                                                      | 9 6             | .3 4.3                  |  |
|        |                                       |                     | peanitic                  | 230                 | 20                 |                      | nches per              | 10% of c                                                     |                 | .3 3.2                  |  |
|        | Cutter                                | Max. a <sub>p</sub> | Carb                      | ide Insert          |                    |                      | th <sup>2)</sup>       | 20% of a                                                     |                 | .2 2.2                  |  |
|        | T45VE/VF                              | .140                | OEC)                      | K/RECX 43           |                    |                      | .003015                | 40% of a                                                     | d 3.2 2         | .2 1.6                  |  |
|        | T45VE/VF                              | .170                | OEC                       | K/RECX 53           |                    |                      | .003018                | SFPM                                                         | 1 factors fo    | or                      |  |
|        | T45VE/VF                              | .210                | OEC)                      | C/RECX 63           |                    |                      | .003020                | vario                                                        | us fz facto     | rs                      |  |
| N      | Work Matorial                         |                     | Condition                 | Hardness            | Mat Cr             | Cutting Spe          | eds in SFPM            |                                                              |                 | _                       |  |
|        | Work Material Cast aluminium          |                     | Condition<br>≤ 12% Si     | <b>HB</b> 75        | <b>Mat. Gr.</b> 23 |                      | 1600 - 4000            | 9                                                            | 1.6             |                         |  |
|        | alloys                                |                     | age-hardened              | 90                  | 24                 |                      | 1200 - 3800            | 6.3                                                          | 1.5             |                         |  |
|        |                                       | >                   | 12% Si heat resistant     | 130                 | 25                 |                      | 1100 - 2800            | 3.2                                                          | 1.4             |                         |  |
|        | Copper & copper                       |                     | Red Brass, brass          | 90                  | 27                 |                      | 600 - 1000             | 2.2                                                          | 1.2             |                         |  |
|        | alloys                                |                     | Bronze                    | 100                 | 28                 |                      | 600 - 1000             | 1.6                                                          | 1.1             |                         |  |
|        | Cutter                                | Max. a              | Carb                      | ide Insert          |                    |                      | nches per              | 1.1                                                          | 1               |                         |  |
|        | T45VE/VF                              | .140                |                           | C/RECX 43           |                    | .002004              | .002004                |                                                              |                 | Ø d3 —                  |  |
|        | T45VE/VF                              | .170                |                           | C/RECX 53           |                    | .002004              | .002004                | 1                                                            | Q               | Ød1 →                   |  |
|        |                                       | .210                |                           | K/RECX 63           |                    | .002004              | .002004                | RECX                                                         | 〈 Insert 🦳      |                         |  |
|        | T45VE/VF                              |                     | 5207                      | Hardness            | Mat. Gr.           |                      | eds in SFPM            | Legend:                                                      |                 | 7                       |  |
| S      | T45VE/VF  Work Material               |                     | Condition                 | HB                  |                    |                      |                        |                                                              |                 | T .                     |  |
| S      | Work Material High-temperature alloy: | s                   | Condition<br>age-hardened | <b>HB</b> 280       | 32                 | 50 - 110             | 50 - 100               | ae - width                                                   | of cut          |                         |  |
| S      | Work Material                         | s                   |                           |                     |                    | 50 - 110<br>70 - 150 | 50 - 100<br>50 - 110   | ae - width<br>ap - depth                                     | of cut          |                         |  |
| S      | Work Material High-temperature alloy: | s                   | age-hardened              | 280                 | 32                 | +                    |                        | ae - width<br>ap - depth<br>d - insert d                     | of cut          | a <sub>e</sub>          |  |

### for STRATUS & VEGA End Mills

| Cutting Data for STRATUS End Mills |           |       |          |          |          |       |                      |                    |                     |                        |  |  |  |
|------------------------------------|-----------|-------|----------|----------|----------|-------|----------------------|--------------------|---------------------|------------------------|--|--|--|
|                                    | SFM       |       | Feed (Ir | nches pe | r tooth) |       | Maximum Depth of Cut |                    |                     |                        |  |  |  |
| Material                           |           | 1/8   | 1/4      | 1/2      | 3/4      | 1     | Slotting<br>Axial    | Profiling<br>Axial | Profiling<br>Radial | Profiling<br>Feed Adj. |  |  |  |
| Steel - Low Carbon                 | 400 - 500 | .0010 | .0020    | .0040    | .0050    | .0060 | 1 x D                | 1 x D              | .5 x D              | + 20%                  |  |  |  |
| Steel - Medium Carbon              | 275 - 400 | .0007 | .0015    | .0035    | .0045    | .0060 | 1 x D                | 1 x D              | .5 x D              | + 20%                  |  |  |  |
| Tool Steel <38 Rc                  | 250 - 350 | .0005 | .0012    | .0030    | .0040    | .0055 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| Cast Iron - Gray                   | 450 - 550 | .001  | .0025    | .0035    | .0045    | .0060 | 1 x D                | 1 x D              | .5 x D              | + 20%                  |  |  |  |
| Cast Iron Ductile                  | 300 - 400 | .0007 | .0012    | .0025    | .0040    | .0055 | 1 x D                | 1 x D              | .5 x D              | + 20%                  |  |  |  |
| Cast Iron Malleable                | 250 - 300 | .0005 | .0010    | .0020    | .0030    | .0040 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| 300 Series Stainless               | 250 - 350 | .0004 | .0010    | .0020    | .0030    | .0040 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| 400 Series Stainless               | 225 - 300 | .0004 | .0010    | .0020    | .0030    | .0040 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| PH Series Stainless                | 200 - 275 | .0003 | .0008    | .0015    | .0025    | .0030 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| Titanium                           | 120 - 200 | .0004 | .0010    | .0020    | .0025    | .0030 | 1 x D                | 1 x D              | .5 x D              | + 15%                  |  |  |  |
| High Temp. Alloys                  | 60 - 110  | .0005 | .0010    | .0018    | .0025    | .0030 | 1 x D                | 1 x D              | .5 x D              | + 10%                  |  |  |  |

| Cutting Data                                                       | D= Tool Diameter<br>Reduce feed rates by 20% when using long length tools |         |         |                         |     |       |       |       |       |       |       |       |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------|---------|-------------------------|-----|-------|-------|-------|-------|-------|-------|-------|
|                                                                    | Туре                                                                      | No. of  | Speed   | Feed (Inches per tooth) |     |       |       |       |       |       |       |       |
|                                                                    | of Cut                                                                    | DOC     | DOC     | Flutes                  | SFM | 1/8   | 1/4   | 3/8   | 1/2   | 5/8   | 3/4   | 1     |
|                                                                    | Slotting                                                                  | .5 x D  | 1 x D   | 6                       | 275 | .0003 | .0007 | .0010 | .0015 | .0019 | .0024 | .0030 |
| Carbon & Tool Steels >38 Rc                                        | Rough                                                                     | 1 x D   | .5 x D  | 6                       | 325 | .0005 | .0010 | .0015 | .0020 | .0025 | .0030 | .0040 |
| Carbon & 1001 Steels >30 NC                                        | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 400 | .0006 | .0012 | .0018 | .0025 | .0031 | .0037 | .0050 |
|                                                                    | HSM                                                                       | .1 x D  | .1 x D  | 6                       | 800 | .0015 | .0030 | .0045 | .0060 | .0075 | .0090 | .0120 |
| Carbon & Tool Steels 39 Rc to 48 Rc                                | Slotting                                                                  | .5 x D  | 1 x D   | 6                       | 200 | .0002 | .0005 | .0007 | .0010 | .0013 | .0016 | .0020 |
|                                                                    | Rough                                                                     | 1 x D   | .5 x D  | 6                       | 250 | .0004 | .0007 | .0011 | .0015 | .0019 | .0024 | .0030 |
|                                                                    | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 325 | .0004 | .0009 | .0013 | .0018 | .0022 | .0027 | .0036 |
|                                                                    | HSM                                                                       | .1 x D  | .1 x D  | 6                       | 600 | .0011 | .0022 | .0033 | .0045 | .0056 | .0068 | .0090 |
|                                                                    | Slotting                                                                  | .25 x D | 1 x D   | 6                       | 225 | .0002 | .0005 | .0007 | .0010 | .0013 | .0016 | .0020 |
| Titanium Alloys                                                    | Rough                                                                     | 1 x D   | .25 x D | 6                       | 250 | .0003 | .0006 | .0009 | .0013 | .0016 | .0020 | .0026 |
|                                                                    | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 350 | .0005 | .0010 | .0015 | .0020 | .0025 | .0030 | .0040 |
|                                                                    | Slotting                                                                  | .25 x D | 1 x D   | 6                       | 70  | .0003 | .0007 | .0011 | .0014 | .0017 | .0022 | .0028 |
| High Temp. Alloys, Inconel, Haynes, Stellite, Hastalloy, Waspalloy | Rough                                                                     | 1 x D   | .25 x D | 6                       | 95  | .0004 | .0009 | .0013 | .0017 | .0022 | .0026 | .0034 |
| Trayries, stemee, trastanoy, waspanoy                              | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 110 | .0005 | .0009 | .0014 | .0019 | .0023 | .0028 | .0038 |
|                                                                    | Slotting                                                                  | .25 x D | 1 x D   | 6                       | 150 | .0002 | .0005 | .0007 | .0010 | .0012 | .0015 | .0020 |
| Carbon & Tool Steels 49 Rc to 57 Rc                                | Rough                                                                     | 1 x D   | 25 x D  | 6                       | 200 | .0003 | .0007 | .0011 | .0015 | .0018 | .0022 | .0030 |
| Carbon & 1001 Steels 49 RC to 57 RC                                | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 275 | .0003 | .0007 | .0011 | .0015 | .0018 | .0022 | .0030 |
|                                                                    | HSM                                                                       | .1 x D  | .1 x D  | 6                       | 500 | .0006 | .0012 | .0017 | .0023 | .0028 | .0034 | .0046 |
|                                                                    | Slotting                                                                  | .20 x D | 1 x D   | 6                       | 45  | .0002 | .0005 | .0007 | .0010 | .0013 | .0016 | .0020 |
| Carbon & Tool Steels 58 Rc to 62Rc                                 | Rough                                                                     | 1 x D   | .20 x D | 6                       | 65  | .0004 | .0007 | .0011 | .0015 | .0019 | .0024 | .0030 |
| Carbon & 1001 Steels 58 KC to 62KC                                 | Finish                                                                    | 1.5 x D | .01 x D | 6                       | 100 | .0004 | .0007 | .0011 | .0015 | .0019 | .0024 | .0030 |
|                                                                    | HSM                                                                       | .1 x D  | .1 x D  | 6                       | 400 | .0005 | .0010 | .0015 | .0020 | .0025 | .0030 | .0040 |

### for 2 & 3 Flute Orion End Mills

|                                     | Cutting Data for ORION 2 & 3 Flute End Mills |         |         |        |       |                         |       |       |       |       |       |       |         |                     |       |       |       |       |       |       |
|-------------------------------------|----------------------------------------------|---------|---------|--------|-------|-------------------------|-------|-------|-------|-------|-------|-------|---------|---------------------|-------|-------|-------|-------|-------|-------|
|                                     | Type of                                      | Axial   | Radial  | No. of | Speed | Feed (Inches per tooth) |       |       |       |       |       |       | Speed   | Feed (mm per tooth) |       |       |       |       | 1)    |       |
| Material                            | Cut                                          | DOC     | DOC     | flutes | (SFM) | 1/8                     | 1/4   | 3/8   | 1/2   | 5/8   | 3/4   | 1     | (m/min) | 3.0                 | 6.0   | 9.0   | 12.0  | 16.0  | 19.0  | 25.0  |
|                                     | Slot                                         | 1 x D   | 1 x D   | 2      | 800   | .0020                   | .0040 | .0060 | .0080 | .0100 | .0120 | .0160 | 244     | .0508               | .1016 | .1524 | .2032 | .2540 | .3048 | .4064 |
| Aluminum Alloys<br>2024, 6061, 7075 | Rough                                        | 1 x D   | .75 x D | 3      | 1000  | .0020                   | .0050 | .0075 | .0100 | .0120 | .0150 | .0200 | 305     | .0508               | .1270 | .1905 | .2540 | .3048 | .3810 | .5080 |
| 202 1, 000 1, 7 0.75                | Finish                                       | 1.5 x D | .01 x D | 3      | 1200  | .0030                   | .0060 | .0090 | .0120 | .0160 | .0200 | .0250 | 366     | .0762               | .1524 | .2286 | .3048 | .4064 | .5080 | .6350 |
| High Silicon                        | Slot                                         | .5 x D  | 1 x D   | 3      | 400   | .0010                   | .0020 | .0030 | .0040 | .0050 | .0060 | .0080 | 122     | .0254               | .0508 | .0762 | .1016 | .1270 | .1524 | .2032 |
| Aluminum                            | Rough                                        | 1 x D   | .5 x D  | 3      | 600   | .0015                   | .0030 | .0045 | .0060 | .0075 | .0090 | .0120 | 183     | .0381               | .0762 | .1143 | .1524 | .1905 | .2286 | .3048 |
| A380, A390                          | Finish                                       | 1.5 x D | .01 x D | 3      | 800   | .0018                   | .0035 | .0055 | .0070 | .0090 | .0110 | .0140 | 244     | .0457               | .0889 | .1397 | .1778 | .2286 | .2794 | .3556 |
|                                     | Slot                                         | 1 x D   | 1 x D   | 2      | 800   | .0020                   | .0040 | .0060 | .0080 | .0100 | .0120 | .0160 | 244     | .0508               | .1016 | .1524 | .2032 | .2540 | .3048 | .4064 |
| Magnesium<br>Alloys                 | Rough                                        | 1 x D   | .75 x D | 3      | 1000  | .0020                   | .0050 | .0075 | .0100 | .0120 | .0150 | .0200 | 305     | .0508               | .1270 | .1905 | .2540 | .3048 | .3810 | .5080 |
| ,                                   | Finish                                       | 1.5 x D | .01 x D | 3      | 1200  | .0030                   | .0060 | .0090 | .0120 | .0160 | .0200 | .0250 | 366     | .0762               | .1524 | .2286 | .3048 | .4064 | .5080 | .6350 |
|                                     | Slot                                         | .75 x D | 1 x D   | 2      | 400   | .0010                   | .0020 | .0030 | .0040 | .0050 | .0060 | .0080 | 122     | .0254               | .0508 | .0762 | .1016 | .1270 | .1524 | .2032 |
| Copper Alloys<br>Brass, Bronze      | Rough                                        | 1 x D   | .75 x D | 3      | 475   | .0012                   | .0025 | .0034 | .0050 | .0063 | .0075 | .0100 | 145     | .0305               | .0635 | .0940 | .1270 | .1600 | .1905 | .2540 |
| Diass, Dionze                       | Finish                                       | 1.5 x D | .01 x D | 3      | 550   | .0015                   | .0030 | .0045 | .0060 | .0075 | .0090 | .0120 | 168     | .0381               | .0762 | .1143 | .1524 | .1905 | .2286 | .3048 |
|                                     | Slot                                         | 1 x D   | 1 x D   | 3      | 400   | .0010                   | .0020 | .0030 | .0040 | .0050 | .0060 | .0080 | 122     | .0254               | .0508 | .0762 | .1016 | .1270 | .1524 | .2032 |
| Composites Plastics, Fiberglass     | Rough                                        | 1 x D   | .75 x D | 3      | 600   | .0015                   | .0030 | .0045 | .0060 | .0075 | .0090 | .0120 | 183     | .0381               | .0762 | .1143 | .1524 | .1905 | .2286 | .3048 |
| r lastics, r locigiass              | Finish                                       | 1.5 x D | .01 x D | 3      | 800   | .0018                   | .0035 | .0055 | .0070 | .0090 | .0110 | .0140 | 244     | .0457               | .0889 | .1397 | .1778 | .2286 | .2794 | .3556 |

D= tool diameter. Reduce feed rates by 20% when using long length tools. Starting parameters shown.